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Transmitter Model

Jin-Hui Wu , Shao-Qun Zhang , Yuan Jiang, and Zhi-Hua Zhou , Fellow, IEEE

Abstract— Neural network models generally involve two impor-
tant components, i.e., network architecture and neuron model.
Although there are abundant studies about network architec-
tures, only a few neuron models have been developed, such as
the MP neuron model developed in 1943 and the spiking neuron
model developed in the 1950s. Recently, a new bio-plausible
neuron model, flexible transmitter (FT) model (Zhang and Zhou,
2021), has been proposed. It exhibits promising behaviors, partic-
ularly on temporal–spatial signals, even when simply embedded
into the common feedforward network architecture. This article
attempts to understand the properties of the FT network (FTNet)
theoretically. Under mild assumptions, we show that: 1) FTNet
is a universal approximator; 2) the approximation complexity of
FTNet can be exponentially smaller than those of commonly used
real-valued neural networks with feedforward/recurrent architec-
tures and is of the same order in the worst case; and 3) any local
minimum of FTNet is the global minimum, implying that it is
possible to identify global minima by local search algorithms.

Index Terms— Approximation complexity, flexible transmitter
(FT) model, local minimum, neural networks.

I. INTRODUCTION

DEEP neural networks have become mainstream in
artificial intelligence and have exhibited excellent per-

formance in many applications, such as disease detection [2],
machine translation [3], emotion recognition [4], etc. Typ-
ically, a neural network model is composed of a network
architecture and a neuron model. The past decade has wit-
nessed abundant studies about network architectures, whereas
the modeling of neurons is relatively less considered. Typ-
ical neuron models include the MP neuron model [5] and
the spiking neuron model [6], [7]. Recently, a new bio-
plausible neuron model, flexible transmitter (FT) model [1],
has been proposed. In contrast to the classical neuron models,
the FT neuron model mimics neurotrophic potentiation and
depression effects by a formulation of a two-variable function,
exhibiting great potential for temporal–spatial data processing.
Furthermore, Zhang and Zhou [1] developed the FT network
(FTNet), a feed-forward neural network (FNN) composed of
FT neurons, which performs competitively with the state-of-
the-art models when handling temporal–spatial data.

However, the theoretical properties of the FT model remain
unknown. This work takes one step in this direction. We notice
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that the formulation of the FT model provides greater flexibil-
ity for the representation of neuron models, and its benefits are
twofold. First, the complex-valued implementation takes into
account the magnitude and phase of variables and is thus good
at processing data with norm-preserving and antisymmetric
structures. Second, the modeling of neurotrophic potentiation
and depression effects derives a local recurrent system, and
FTNet intrinsically has temporal–spatial representation ability
even in a feed-forward architecture. Inspired by these insights,
we present the theoretical advantages over the FNN and
recurrent neural network (RNN) from the perspectives of
approximation and local minima. Our main contributions can
be summarized as follows.

1) FTNet is a universal approximator, i.e., a one-hidden-
layer FTNet with admissible activation functions can
approximate any continuous function and discrete-time
open dynamical system (DODS) on any compact set
arbitrarily well, stated in Theorems 1 and 2, respectively.

2) We present the approximation-complexity advantages
and the worst case guarantees of FTNet over the
FNN and RNN. Specifically, separation results exist
between one-hidden-layer FTNet and one-hidden-layer
FNN/RNN, as shown in Theorems 3 and 4, respec-
tively. In addition, any function expressible by a
one-hidden-layer FNN or RNN can be approximated
by a one-hidden-layer FTNet with a similar number
of hidden neurons, as shown in Theorems 5 and 6,
respectively. These theorems imply that FTNet is capa-
ble of expressing functions more efficiently than FNN
and RNN.

3) We show that FTNet in the feedforward architecture has
no suboptimal local minimum using general activations
and loss functions, as illustrated in Theorem 7. This
implies that local search algorithms for FTNet have the
potential to converge to the global minimum.

The rest of this article is organized as follows. Section II
introduces related work. Section III provides basic notations,
definitions, and the formulation of FTNet. Section IV proves
the universal approximation of FTNet. Section V investigates
the approximation complexity of FTNet. Section VI studies the
property of the local minima of FTNet. Section VII concludes
our work with prospect.

II. RELATED WORKS

A. Universal Approximation

The universal approximation confirms the powerful expres-
sivity of neural networks. The earliest research is the universal
approximation theorem of FNN, which proves that FNN with
suitable activation functions can approximate any continuous
function on any compact set arbitrarily well [8], [9], [10].
Furthermore, Leshno et al. [11] point out that a nonpoly-
nomial activation function is the necessary and sufficient
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condition for FNNs to achieve universal approximation. Later,
some researchers extend the universal approximation theo-
rems to other real-weighted neural networks with different
architectures, such as RNN [12], [13], [14], [15], [16] and
convolutional neural networks [17]. For complex-weighted
neural networks, it has been proven that they can approximate
any continuous complex-valued functions on any compact set
using some activation function [18], and that nonholomorphic
and nonantiholomorphic activation functions are the necessary
and sufficient condition of universal approximation [19]. Our
work investigates the universal approximation of FTNet, i.e.,
the capability of complex-weighted neural networks to approx-
imate real-valued functions and dynamical systems.

B. Approximation Complexity
The universal approximation theorems only prove the possi-

bility of approximating certain functions, but do not consider
approximation complexity, i.e., the number of required hid-
den neurons for approximating particular functions. It is
also important to consider approximation complexity, which
reflects the efficiency of approximation. Early works focus on
the degree of approximation of one-hidden-layer FNN, i.e.,
how approximation error depends on the input dimension and
the number of hidden units [20], [21], [22], [23]. Recent works
prove separation results, i.e., one model cannot be expressed
by another model with the same order of parameters [24],
[25], [26], [27]. A notable work proves that one-hidden-layer
FNN needs at least exponential parameters to express a given
complex-reaction network (CRNet) [28]. Our work not only
provides the separation results between FTNet and FNN/RNN
but also guarantees that any FNN/RNN can be expressed by
FTNet with a similar hidden size.

C. Local Minima
Suboptimal local minima are undesirable points of the loss

surface, without which it is tractable to train neural networks
using local search algorithms. Early works show that one-
hidden-layer FNN using the squared loss has no suboptimal
local minimum under suitable conditions [29], [30], [31], [32].
These results are extended to multilayer FNN [33], [34] and
other types of neural networks, such as deep ResNet [35], deep
convolutional neural networks [36], deep linear networks [37],
[38], and overparameterized deep neural networks [39]. From
another perspective of algorithms, some researchers prove that
some commonly used gradient-based algorithms, e.g., GD and
SGD, can converge to the global minimum or an almost
optimal solution when optimizing overparameterized neural
networks [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50]. Our work extends the classical results of FNN to FTNet
in the feedforward architecture and generalizes the condition
on the loss function from the squared loss to a large class of
analytic functions.

III. PRELIMINARY

We denote by i =
√

−1 the imaginary unit. Let Re(z),
Im(z), θz , and z be the real part, imaginary part, phase, and
complex conjugate of the complex number z, respectively. Let
0a×b denote the zero matrix with a rows and b columns.

This work considers FTNet with two typical architectures,
that is, recurrent FTNet (R-FTNet) and feedforward FTNet
(F-FTNet), and the time-series regression task with 1-D out-
puts throughout this article. We focus on one-hidden-layer
FTNet throughout this article. For deep FTNet, it would be

interesting to study feature space transformation, which might
be a key to understanding the mysteries behind the success
of deep neural networks [51]. Let xt ∈ RI be the input
vector at time t , and x1:T = (x1; x2; . . . ; xT ) ∈ RI T denotes
the concatenated input vector at time T . We employ the
mapping f×,R to denote a one-hidden-layer R-FTNet with
H× ⩾ I + 1 hidden neurons as follows:
f×,R : x1:T 7→ (y×,1, . . . , y×,T )

st + r t i = σ×((W× + V×i)(κ(xt , H×)+ r t−1i))
y×,t = α⊤

×
st , t ∈ [T ] (1)

where r t , st ∈ RH× , and y×,t ∈ R represent the receptor,
stimulus, and output at time t , respectively, W×, V×, and α×

denote real-valued weight parameters, κ : RI
× N+

→ RH×

stretches the input to a higher dimensional space in which
κ(x, H×) = (x; 0; . . . ; 0; 1) ∈ RH× , with H× ⩾ I + 1 (2)

and σ× is an activation function applied componentwise.
Notice that (1) is a multiplicative (rather than additive) form
of FTNet since multiplication is the last operation before
applying the activation function. In addition, we also employ
the mapping f×,F to denote a one-hidden-layer F-FTNet with
H× ⩾ I + 1 hidden neurons as follows:

f×,F : x 7→ α⊤

×
Re
[
σ×((W× + V×i)κ(x, H×))

]
. (3)

The zReLU activation function [52] is a promising choice
of the activation function in FTNet, which extends the
widely used real-valued activation function ReLU [53] to the
complex-valued domain, and is defined as

σ(z) =

{
z, if θz ∈

[
0, π/2

]
∪
[
π, 3π/2

]
0, otherwise.

(4)

Dynamical systems are of great interest when considering
the universal approximation of neuron models in the recurrent
architecture. We focus on the DODS defined as follows.

Definition 1: Given an initial hidden state h0 ∈ RHD with
HD ∈ N+, a DODS is a mapping fD defined by

fD : x1:T 7→ (y1, . . . , yT )

yt = ψ(ht )

ht = ϕ(xt , ht−1), t ∈ [T ] (5)
where xt ∈ RI , ht ∈ RHD , and yt ∈ R represent the
input, hidden state, and output at time t , respectively, ϕ :

RI
× RHD → RHD and ψ : RHD → RO are continuous

mappings.

IV. UNIVERSAL APPROXIMATION

We show the universal approximation of F-FTNet and
R-FTNet in Sections IV-A and IV-B, respectively.

A. Universal Approximation of F-FTNet
Let ∥ f ∥L∞(�) denote the essential supremum of the function

f on the domain �, i.e.,
∥ f ∥L∞(�) = inf{λ | µ{x : | f (x)| ⩾ λ} = 0}

where µ is the Lebesgue measure. We now present the
universal approximation for F-FTNet as follows.

Theorem 1: Let K ⊂ RI be a compact set, g is a continuous
function on K , and σ× is the activation function of F-FTNet.
Suppose there exists a constant c ∈ R, such that the function
σ(x) = Re[σ×(x + ci)] is continuous almost everywhere and
not polynomial almost everywhere. Then for any ε > 0, there
exists an F-FTNet f×,F, such that∥∥ f×,F−g

∥∥
L∞(K ) ⩽ ε.
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Theorem 1 indicates that F-FTNet with suitable activation
functions can approximate any continuous function on any
compact set arbitrarily well. The conditions in this theorem
are satisfied by many commonly used activation functions,
such as modReLU [54], zReLU [52], and CReLU [55].
Previous studies focus on the universal approximation of
real-weighted networks with real-valued target functions or
complex-weighted networks with complex-valued target func-
tions. To our knowledge, Theorem 1 is the first result
considering the approximation capability of complex-weighted
networks with real-valued target functions. The condition
about σ of FTNet is the same as that of FNN [11], but
the activation σ× of FTNet is more flexible since σ is just
the restriction of σ× on a particular direction. The require-
ment of not polynomial σ is weaker than non-holomorphic
and non-antiholomorphic activation, which is the necessary
requirement of complex-weighted networks with complex-
valued target functions [19]. Thus, FTNet successfully benefits
from expressing real-valued functions instead of complex-
valued ones. We begin our proof with the following lemma.

Lemma 1 [11, Th. 1]: Let K ⊂ RI be a compact set, and g
is a continuous function on K . Suppose the activation function
σF is continuous almost everywhere and not polynomial almost
everywhere. Then for any ε > 0, there exist HF ∈ N+, WF ∈

RHF×I , and θF,αF ∈ RHF , such that∥∥α⊤

F σF(WFx − θF)− g(x)
∥∥

L∞(K ) ⩽ ε.

Lemma 1 shows that one-hidden-layer FNN can approxi-
mate any continuous function on any compact set arbitrarily
well, using suitable activation functions.

Proof of Theorem 1: Based on Lemma 1, it suffices
to construct an F-FTNet that has the same output as any
given FNN. Since the function σ(x) is continuous almost
everywhere and not polynomial almost everywhere, it satisfies
the conditions in Lemma 1. According to Lemma 1, there exist
HF ∈ N+, WF ∈ RHF×I , and θF,αF ∈ RHF , such that∥∥α⊤

F σ(WFx − θF)− g(x)
∥∥

L∞(K ) ⩽ ε. (6)
We now construct an F-FTNet with H× = max{I + 1, HF}

hidden neurons as follows:

W× =

[
WF 0 −θF
0 0 0

]
V× =

[
0 0 c1
0 0 0

]
, α× =

[
αF
0

]
.

Thus, one has
f×,F(x) = α⊤

×
Re
[
σ×((W× + V×i)κ(x, H×))

]
= α⊤

×
Re
[
σ×([WFx − θF + c1i; 0])

]
= α⊤

F Re
[
σ×(WFx − θF + c1i)

]
= α⊤

F σ(WFx − θF) (7)
where the first equality holds according to (3), the second and
third equalities hold from the construction of the F-FTNet,
and the fourth equality holds because of the definition of the
function σ . From (6) and (7), we obtain∥∥ f×,F(x)− g(x)

∥∥
L∞(K ) ⩽ ε

which completes the proof. □

B. Universal Approximation of R-FTNet

We proceed to study the universal approximation for
R-FTNet as follows.

Theorem 2: Let K ⊂ RI be a convex compact set, fD is
a DODS defined by (5), and σ× is the activation function
of R-FTNet satisfying σ×(0) = 0. Suppose there exists a

constant c ∈ R, such that both σ1(x) = Re[σ×(x + ci)] and
σ2(x) = Im[σ×(x +ci)] are continuous almost everywhere and
not polynomials almost everywhere. Then for any ε > 0, there
exists an R-FTNet f×,R, such that∥∥ f×,R − fD

∥∥
L∞(K T )

⩽ ε.

Theorem 2 shows that R-FTNet is a universal approximator.
The requirement of convex domain K is trivial since it is
always possible to find a convex domain including a given
compact domain. The conditions of the activation function are
satisfied by many commonly used activation functions, such as
modReLU, zReLU, and CReLU. Existing studies investigate
the universal approximation of RNN, and the most general
condition uses sigmoidal activation functions [16]. We extend
the results to complex-weighted networks and generalize the
requirement of activation functions.

Proof of Theorem 2: We start our proof with the universal
approximation of an intermediate network, named additive
FTNet. One-hidden-layer additive FTNet with H+ hidden
neurons can be viewed as a mapping f+,R, defined by

f+,R : x1:T 7→ (y+,1, . . . , y+,T )

pt = σ1(Axt + Bq t−1 − ζ )

q t = σ2(Axt + Bq t−1 − ζ )

y+,t = α⊤

+
pt , t ∈ [T ] (8)

where A ∈ RH+×I ,B ∈ RH+×H+ ,α+, ζ ∈ RH+ indicates
weight parameters, and pt , q t ∈ RH+ denotes hidden states.
We claim that there exists an additive FTNet f+,R, such that∥∥ f+,R − fD

∥∥
L∞(K T )

⩽ ε. (9)
This claim indicates the universal approximation of additive

FTNet. The proof of (9) is similar to that of the universal
approximation of RNN and is provided in Appendix A.

Based on (9), it suffices to prove that any additive FTNet
using induced activation functions σ1 and σ2 is equivalent to
an R-FTNet using the activation function σ .

First, provided an additive FTNet, the R-FTNet with H× =

I + H+ + 1 hidden neurons is constructed as follows:

W× =

 0I×I 0 0
0 B −c1
0 0 01×1

, r0 =

[ 0
q0
0

]

V× =

[ 0 0 0
A 0 −ζ
0 0 0

]
, α× =

[ 0
α+

0

]
. (10)

Second, we calculate the receptor, stimulus, and output
of the above R-FTNet. We prove r t = [0I×1

; q t ; 01×1
] by

mathematical induction as follows.

1) For t = 0, the conclusion holds according to (10).
2) Suppose that the conclusion holds for t = τ with τ ⩽

T − 1. Thus, one has
rτ+1 = Im

[
σ×

(
0; c1 +

(
Axτ+1 + Bqτ − ζ

)
i; 0
)]

=
[
0; σ2(Axτ+1 + Bqτ − ζ ); 0

]
=
[
0; qτ+1; 0

]
where the first equality holds from (1), (10), and the
induction hypothesis, the second equality holds based on
the definition of the activation function σ2 in Theorem 2,
and the third equality holds according to (8). Thus, the
conclusion holds for t = τ + 1.

For any t ∈ [T ], the stimulus satisfies
st = Re

[
σ×

(
0; c1 +

(
Axt + Bq t−1 − ζ

)
i; 0
)]



WU et al.: THEORETICAL EXPLORATION OF FLEXIBLE TRANSMITTER MODEL 3677

=
[
0; σ2(c1,Axt + Bq t−1 − ζ ); 0

]
=
[
0; pt ; 0

]
which leads to y×,t = α⊤

×
st = α⊤

+
pt = y+,t . Therefore, the

R-FTNet defined by (10) has the same output as the additive
FTNet defined by (8), i.e.,

f×,R(x1:T ) = f+,R(x1:T ) ∀ x1:T ∈ K T . (11)
Finally, from (9) and (11), one has

∥ f×,R(x1:T )− fD(x1:T )∥L∞(K T )

= ∥ f+,R(x1:T )− fD(x1:T )∥L∞(K T ) ⩽ ε

which completes the proof. □

V. APPROXIMATION COMPLEXITY

We show the approximation advantage of FTNet over FNN
and RNN in Section V-A and provide worst case guarantees in
Section V-B. Let us introduce the (ε,D)-approximation, which
is used throughout this section.

Definition 2: Let g be a function from RI to R, F is a class
of functions from RI to R, and D is a distribution over RI .
The function g can be (ε,D)-approximated by function class
F if there exists a function f ∈ F , such that

Ex∼D
[
(g(x)− f (x))2

]
⩽ ε.

The (ε,D)-approximation means that the minimal expected
squared difference between a function from the function class
F and the target function g is small. Let F be the function
space of a neural network, and g is the learning target. Then
the (ε,D)-approximation indicates that it is possible to find
a set of parameters for the neural network, such that the
neural network suffers a negligible loss under the task of
learning g.

A. Approximation-Complexity Advantage of FTNet
We now present two theorems showing the separation results

between FTNet and FNN/RNN, respectively.
Theorem 3: There exist constants I1 ∈ N+, ε1 > 0, and

c1 > 0, such that for any input dimension I ⩾ I1, there exist
a distribution D1 over RI and a function f1 : RI

→ R, such
that

1) For any ε > 0, the target function f1 can be (ε,D1)-
approximated by one-hidden-layer F-FTNet with at most
max{3 c2

1 I 15/2/ε2, 27I 2
} parameters using the zReLU

activation function.
2) The target function f1 cannot be (ε1,D1)-approximated

by one-hidden-layer FNN with at most ε1eε1 I parameters
using the ReLU activation function.

Theorem 4: There exist constants I2 ∈ N+, ε2 > 0, and
c2 > 0, such that for any input dimension I ⩾ I2, there exist
a distribution D2 over RI and a DODS fD : RI T

→ RT , such
that

1) For any ε > 0, the DODS fD can be (T ε,DT
2 )-

approximated by one-hidden-layer R-FTNet with at most
3(c2 I 15/4/ε + 3I )2 parameters using the zReLU activa-
tion function.

2) The DODS fD cannot be (T ε2,DT
2 )-approximated by

one-hidden-layer RNN with at most ε0eε2 I /4 parameters
using the ReLU activation function.

Theorems 3 and 4 show the approximation-complexity
advantage of FTNet over FNN and RNN, respectively, i.e.,
there exists a target function such that FTNet can express
it with polynomial parameters, but FNN or RNN cannot

approximate it unless exponential parameters are used. Pre-
vious studies usually demonstrate separation results between
deep networks and shallow networks [24], [25], [26]. A recent
study shows exponential separation between one-hidden-layer
CRNet and one-hidden-layer FNN [28]. Our results consider
both feedforward and recurrent architectures and demonstrate
the advantage of FTNet by showing that it is sufficient for
one-hidden-layer FTNet to possess exponential separation over
FNN and RNN. We begin our proof by introducing the CRNet
and an important lemma.

The CRNet is a recently proposed neural network with
complex-valued operations [28]. The real-valued input vector
x = (x1; x2; . . . ; x I ) ∈ RI is folded by a transformation
mapping τ : RI

→ CI/2 to form a complex-valued vector,
i.e.,
τ : x 7→

(
x1; x2; . . . ; x I/2

)
+
(
x I/2+1; x I/2+2; . . . ; x I/2

)
i

where the input dimension I is assumed to be an even
number without loss of generality. Recalling the formulation of
CRNet [28], one-hidden-layer CRNet with HC hidden neurons
is a mapping fC : RI

→ R of the following form:

fC : x 7→ Re
[
α⊤

CσC(WCτ(x)+ bC)
]

(12)
where WC ∈ CHC×d , bC ∈ CHC , αC ∈ CHC indicate weight
parameters, and σC : C → C is a complex-valued activation
function applied componentwise.

Lemma 2 [24, Th. 1] and [28, Th. 2]: There exist constants
I0 ∈ N+, ε0 > 0, and c0 > 0, such that for any input dimension
I ⩾ I0, there exist a distribution D0 over RI and a function
f0 : RI

→ R, such that.
1) For any ε > 0, f0 can be (ε,D0)-approximated by one-

hidden-layer CRNet with at most c0 I 19/4/ε parameters
using the zReLU activation function.

2) The function f0 cannot be (ε0,D0)-approximated by
one-hidden-layer FNN with at most ε0eε0 I parameters
using the ReLU activation function.

Lemma 2 indicates the approximation-complexity advantage
of CRNet over FNN, i.e., there exists a target function such
that CRNet can express it with polynomial parameters, but
FNN cannot express it unless exponential parameters are used.

Proof of Theorem 3: Let I1 = I0, ε1 = ε0, and c1 = c0,
where I0, ε0, and c0 are defined in Lemma 2. For any I ⩾ I1,
let D1 = D and f1 = f0. Without loss of generality, let the
input dimension I be an even number.

First, we prove that F-FTNet can approximate the target
function f1 using polynomial parameters. Recalling the defi-
nition of CRNet in (12), we define

WC = WC,R + WC,I i
bC = bC,R + bC,I i
αC = αC,R + αC,I i (13)

where WC,R,WC,I ∈ RHC×I/2, bC,R, bC,I ∈ RHC , and
αC,R,αC,I ∈ RHC are real-valued parameters. The rest of the
proof is divided into several steps.

Step 1: We construct an F-FTNet with the same output as
a given CRNet. The F-FTNet with H× = max{2HC, I + 1}

hidden neurons is constructed as follows:

W× =

[
WC,R −WC,I 0 bC,R
WC,I WC,R 0 bC,I

0 0 0 0

]

V× =

[
WC,I WC,R 0 bC,I
WC,R −WC,I 0 bC,R

0 0 0 0

]
r0 = 0, α× =

[
αC,R; −αC,I ; 0

]
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and σ× is the zReLU activation function. The output of the
constructed F-FTNet above satisfies

f×,F(x) = α⊤

×
Re
[
σ×((W× + V×i)(κ(x, H×)+ r0i))

]
= α⊤

×
Re
[
σC

([
WCτ(x)+ bC; WCτ(x)+ bCi; 0

])]
= α⊤

C,RRe[σC(WCτ(x)+ bC)]

− α⊤

C,I Re
[
σC

(
WCτ(x)+ bCi

)]
. (14)

It is observed that

Re
[
σC(x + yi)

]
= Im

[
σC(x + yi i)

]
=

{
x, if xy ⩾ 0,
0, otherwise.

Thus, one has

f×,F(x) = Re
[(

αC,R + αC,I i
)⊤
σC(WCτ(x)+ bC)

]
= Re

[
α⊤

CσC(WCτ(x)+ bC)
]

= fC(x) (15)
which indicates that any CRNet with hidden size HC can be
expressed by an F-FTNet with hidden size max{2HC, I + 1}.

Step 2: We bound the number of required parameters in the
constructed F-FTNet. From Lemma 2, for any ε > 0, there
exists CRNet fC with at most (c1 I 19/4)/ε parameters using
the zReLU activation function, such that

Ex∼D
[
( fC(x)− f1(x))2

]
⩽ ε. (16)

For CRNet with HC hidden neurons, it has 2HC(I + 2)
parameters. Thus, the hidden size of CRNet satisfies

HC ⩽
c1 I 19/4

2(I + 2)ε
⩽

c1 I 15/4

2ε
.

According to Step 2, there exists an F-FTNet, with no more
than max{2HC, I + 1} hidden neurons, satisfying f×,F(x) =

fC(x). This property, together with (16), indicates that

Ex∼D

[(
f×,F(x)− f1(x)

)2
]

⩽ ε

and that the number of hidden neurons in the constructed
F-FTNet f×,F is no more than

H× ⩽ max{2HC, I + 1} ⩽ max
{
c1 I 15/4/ε, I + 1

}
.

For F-FTNet with H× hidden neurons, it has 2H 2
×

+ H×

parameters. Thus, the number of parameters in the constructed
F-FTNet f×,F is no more than

2 H 2
×

+ H× ⩽ 3H 2
×

⩽ max
{
3 c2

1 I 15/2/ε2, 27I 2}.
Second, Lemma 2 indicates that FNN needs at least expo-

nential parameters to approximate the target function f1.
Combining the conclusions above completes the proof. □

Proof of Theorem 4: Let I2 = I0, ε2 = ε0, and c2 = c0,
where I0, ε0, and c0 are defined in Lemma 2. For any I ⩾ I2,
let D2 = D. Without loss of generality, let the input dimension
I be an even number. The DODS is constructed as follows. For
any input x ∈ RI and hidden state h ∈ RHD , let ϕ(x, h) = x
and ψ(h) = f0(h), where f0 is the same function as that in
Lemma 2. Thus, the output at time t is

yt = ψ(ht ) = ψ(ϕ(xt , ht−1)) = f0(xt ) (17)
which holds according to (5).

First, we prove that R-FTNet can express fD using polyno-
mial parameters. The proof is divided into several steps.

Step 1: We construct an R-FTNet with the same output as
a given CRNet. From the proof of Theorem 3, for any ε > 0,
there exists a CRNet fC with at most HC = (c1 I 15/4)/(2ε)
hidden neurons using the zReLU activation function, such that

Ex∼D
[
( fC(x)− f0(x))2

]
⩽ ε. (18)

Let WC,R , WC,I , bC,R , bC,I , αC,R , and αC,I be the
real-valued weight matrices of the above CRNet, which are
defined in the same way as those in (13). Define the R-FTNet
f×,R with H× = 2HC + I + 1 hidden neurons as follows:

W× =


0I×I/2 0 0 0
WC,R −WC,I 0 bC,R

WC,I WC,R 0 bC,I

0 0 0 0



V× =

 0I×I/2 0 0 0
WC,I WC,R 0 bC,I
WC,R −WC,I 0 bC,R

0 0 0 0


r0 = 0, α× =

[
0; αC,R; −αC,I ; 0

]
and σ× is the zReLU activation function. We then prove that
the output of the above R-FTNet is the same as that of the
CRNet in (18). Since the first I rows and the last row in W×

and V× are all 0, one has r t = [0I×1; r̃ t ; 01×1] for any t ∈ [T ],
where r̃ t ∈ R2HC is an arbitrary vector. Then the output of the
R-FTNet at time t is

y×,t = α⊤

×
Re
[
σ×((W× + V×i)(κ(xt , H×)+ r t−1i))

]
= α⊤

C,RRe[σC(WCτ(xt )+ bC)]

− α⊤

C,I Re
[
σC

(
WCτ(xt )+ bCi

)]
.

The right-hand side of the above equation is the same as that
of (14), except substituting x with xt . By similar derivation
used in (15), one has

y×,t = fC(xt ) ∀ t ∈ [T ]. (19)
Step 2: We prove that the R-FTNet constructed in Step 1 can

approximate DODS fD with a small expected squared loss and
then bound the number of required parameters. The expected
squared loss of the above R-FTNet is

Ex1:T ∼DT
2

[∥∥ f×,R(x1:T )− fD(x1:T )
∥∥2
]

= Ex1:T ∼DT
2

[
T∑

t=1

(
y×,t − yt

)2

]

= Ex1:T ∼DT
2

[
T∑

t=1

( fC(xt )− f0(xt ))
2

]
⩽ T ε

where the second equality holds from (17), (19), and the first
inequality holds based on (18). We then calculate the number
of parameters in the above R-FTNet. Since FTNet with hidden
size H× has 2H 2

×
+ H× parameters, the number of parameters

in the constructed R-FTNet is no more than
2 H 2

×
+ H× ⩽ 3H 2

×
⩽ 3

(
c1 I 15/4/ε + 3I

)2
.

Second, we prove that RNN needs at least exponential
parameters to approximate the target DODS fD. The proof
is divided into several steps.

Step 1: We prove that if the total loss suffered by RNN is
large, there exists a time point t ∈ [T ], such that RNN suffers
a large loss at time t . For the unity of notations, we rewrite the
one-hidden-layer RNN fR with HR hidden neurons as follows:

fR : x1:T 7→ (yR,1, . . . , yR,T )

mt = σR
(
WRxt + VRmt−1 − ζ R

)
yR,t = α⊤

R mt , for t ∈ [T ] (20)
where mt ∈ RHR and yR,t ∈ R represent the memory and
output at time t , respectively, WR, VR, ζ R, αR denote weight
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parameters, and σR is the ReLU activation function applied
componentwise. If the DODS can be (T ε0,DT

2 )-approximated
by RNN, the following holds from Definition 2:

T ε0 ⩾ Ex1:T ∼DT
2

[
∥ fR(x1:T )− fD(x1:T )∥

2]
= Ex1:T ∼DT

2

[
T∑

t=1

(
yR,t − yt

)2

]
.

Since for any time t ∈ [T ], the squared term (yR,t − yt )
2 is

always non-negative, there exists time t0 ∈ [T ], such that
Ext0 ∼D2 [(yR,t0 − yt0)

2
] ⩽ ε0. According to the definitions of

yR,t0 and yt0 in (20) and (17), one has

Ex∼D2

[(
α⊤

RσR(WRx + VRmt0−1 + θR)− f0(x)
)2
]

⩽ ε0.

(21)
Step 2: We use Lemma 2 to give a lower bound on the

number of parameters of RNN with small loss. Before the
proof, we rewrite the FNN in the mapping form for the unity
of notation. One-hidden-layer FNN with HF hidden neurons
can be viewed as a mapping fF, defined by

fF : x 7→ α⊤

RσF
(
WFx − ζ F

)
(22)

where x ∈ RI represents input at time t , WF ∈ RHF×I , ζ F,
αF ∈ RHF denote weight parameters, and σF is the ReLU
activation function applied componentwise. We now construct
an FNN equivalent to the RNN at time t0 as follows. Let
αF = αR, WF = WR, and bF = VRmt0−1 +θR. From (21), one
has Ex∼D2 [( fF(x) − f0(x))2] ⩽ ε0. According to Lemma 2,
the number of parameters of fF is at least ε0eε0 I . For FNN
with HF hidden neurons, it has 2HF(I + 1) parameters. Thus,
the hidden size of the FNN satisfies

HF ⩾
ε0eε0 I

2(I + 1)
⩾
ε0eε0 I

4I
.

For RNN with HR hidden neurons, it has HR(I + HR + 2)
parameters. Since the above FNN has the same hidden size
as the RNN, i.e., HR = HF, one knows that the number of
parameters of RNN satisfies

HR(I + HR + 2) > HR I = HF I ⩾
ε0eε0 I

4
.

Combining the conclusions above completes the proof. □

B. Worst Case Guarantee of FTNet

We proceed to provide the worst case guarantees of approx-
imation complexity for F-FTNet and R-FTNet.

Theorem 5: Let f be a function from RI to R, and D is
a distribution over RI . For any ε > 0, if f can be (ε,D)-
approximated by one-hidden-layer FNN with hidden size HF
using the ReLU activation function, then f can be (ε,D)-
approximated by one-hidden-layer F-FTNet× with hidden size
max{HF, I + 1} using the zReLU activation function.

Theorem 6: Let fD be a DODS from RI T to RT , and D is
a distribution over RT I . For any ε > 0, if fD can be (ε,D)-
approximated by one-hidden-layer RNN with hidden size HR
using the ReLU activation function, then fD can be (ε,D)-
approximated by one-hidden-layer R-FTNet× with 2HR + I +

1 hidden neurons using the zReLU activation function.
Theorems 5 and 6 provide the worst case guarantees for

FTNet, saying that the disadvantages of FTNet over FNN
and RNN are no more than constants. Previous studies only
provide separation advantages of model A over model B
when expressing particular functions [24], [25], [26], [27],

[28], without considering the opposite problem, i.e., whether
model B possesses separation advantages over model A when
approximating other functions. To our knowledge, our work
is the first one to realize the opposite problem and provide a
negative answer.

Proof of Theorem 5: Since f can be (ε,D)-approximated
by FNN, there exists an FNN defined by (22), such that

Ex∼D
[
( f (x)− fF(x))2

]
⩽ ε. (23)

First, an F-FTNet× f×,F with H× = max{HF, I +1} hidden
neurons is constructed as follows:

W× =

[
WF 0 bF
0 0 0

]
,V× =

[
0 0 1
0 0 0

]
r0 = 0, α× = [αF; 0]

and σ× is the zReLU activation function.
Second, we prove that the output of the above F-FTNet× is

the same as that of the FNN in (23). For any input x ∈ RI ,
the output of the F-FTNet× is

f×,F(x) = α⊤

×
Re
[
σ×((W× + V×i)(κ(x, H×)+ r0i))

]
= α⊤

×
Re
[
σ×([(WFx + bF)+ 1i; 0])

]
= α⊤

F Re
[
σ×(WFx + bF + 1i)

]
where the first equality holds based on (3), the second and third
equalities hold from the construction of F-FTNet× in Step 1.
Recalling the definition of the zReLU activation function
in (4), one has

f×,F(x) = α⊤

F Re[(WFx + bF + 1i) ◦ I(WFx + bF ⩾ 0)]
= α⊤

F [(WFx + bF) ◦ I(WFx + bF ⩾ 0)]
= α⊤

F σF(WFx + bF)

= fF(x) (24)
where the third equality holds because σF is the ReLU activa-
tion, and the fourth equality holds from (22). Finally, we prove
that the constructed F-FTNet× can (ε,D)-approximate the
function f . According to (23) and (24), one has

Ex
[
( f (x)− f×,F(x))2

]
= Ex

[
( f (x)− fF(x))2

]
⩽ ε

which completes the proof. □
Proof of Theorem 6: Since the target DODS fD can be

(ε,D)-approximated by RNN, there exists an RNN defined
by (20) satisfying the following inequality:

Ex1:T ∼D
[
( fD(x1:T )− fR(x1:T ))

2] ⩽ ε. (25)
First, we construct an R-FTNet× f×,R with hidden size

H× = 2HR + I + 1 using the zReLU activation as follows:

W× =

 0I×I 0 0 0
WR 0HR×HR 0 θR

0 0 VR 1
0 0 0 01×1


V× =

 0 0 0 0
0 0 −VR 1

WR 0 0 θR
0 0 0 0


r0 =

[
0I×1; 0HR×1; m0; 01×1

]
α× =

[
0I×1; αR; 0HR×1; 01×1

]
. (26)

Second, we prove that the output of the constructed
R-FTNet× in (26) is the same as that of the RNN in (25).
Let r t = [r t,1; r t,2; r t,3; r t,4], where r t,1 ∈ RI , r t,2 ∈ RHR ,
r t,3 ∈ RHR , and r t,4 ∈ R. We prove that r t,1 = 0I×1, r t,3 = mt ,
and r t,4 = 01×1 hold for any t ⩽ T by mathematical induction.

1) Base Case: From (26), the claim holds for t = 0.
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TABLE I
APPROXIMATION COMPLEXITY OF FTNet AND FNN

2) Induction: Suppose that the claim holds for t = τ where
τ ∈ {0, 1, . . . , T − 1}. From (26), it is observed that the
first and fourth rows of the weight matrices W× and V×

are all 0. Based on σ×(0) = 0, one knows that
rτ+1,1 = σ×(0) = 0 and rτ+1,4 = σ×(0) = 0.

Furthermore, one has
rτ+1,3 = Im

[
σ×

(
1 +

(
WRxτ+1 + VRrτ,3 + θR

)
i
)]

=
(
WRxτ+1 + VRrτ,3 + θR

)
◦I
(
WRxτ+1 + VRrτ,3 + θR ⩾ 0

)
= σR(WRxτ+1 + VRmτ + θR)

= mτ+1

where the first equality holds from the construction
in (26) and the hypothesis induction, the second equality
holds according to (4), the third equality holds because
σR is the ReLU activation function, and the fourth
equality holds based on (20). Thus, the claim holds for
t = τ + 1.

For any t ∈ [T ], let st = [st,1; st,2; st,3; st,4], where st,1 ∈

RI , st,2 ∈ RHR , st,3 ∈ RHR , and st,4 ∈ R. Similar to the
calculation of r t,3, one has st,2 = mt . Thus, the output of
R-FTNet× is the same as that of RNN, i.e.,

y×,t = α⊤

×
st = α⊤

R st,2 = α⊤

R mt = yR,t . (27)
Finally, we prove that the constructed R-FTNet× can (ε,D)-

approximate fD. From (25) and (27), one has
Ex1:T ∼D

[
( fD(x1:T )− f×,R(x1:T ))

2]
= Ex1:T ∼D

[
( fD(x1:T )− fR(x1:T ))

2] ⩽ ε

which completes the proof. □
Tables I and II summarize the approximation complexity

results of FTNet using asymptotic notations, where ϵ1 and
ϵ2 are two constants irrelevant to the input dimension I . FTNet
possesses exponential advantage when expressing particular
functions, and requires hidden size of the same order in
arbitrary cases. These results suggest that FTNet is able to
exhibit dynamic reaction by the flexible formulation of the
synapse, which would be demanded in decision making [56]
and open-environment machine learning [57], though the anal-
ysis is beyond the scope of this article.

VI. LOCAL MINIMA

This section investigates the empirical loss surface of
F-FTNet. Let S = {(xi , yi )}

n
i=1 be the training set, where

xi ∈ RI denotes the i th sample, and yi ∈ R represents the
label of the i th sample. Consider the empirical loss of F-FTNet
with the following form:

L̂ =

n∑
i=1

l
(

f×,F(xi )− yi
)

(28)

where f×,F is the mapping of F-FTNet defined in (3), and
l : R → R is a loss function. Let Z = W× + V×i be
the complex-valued weight matrix, and α denotes α× for
simplicity. Then the empirical loss L̂ is a function of Z and
α, denoted by L̂(Z,α). Holomorphic activation functions are

TABLE II
APPROXIMATION COMPLEXITY OF FTNet AND RNN

of interest in this section, and the definition of holomorphic
functions is reviewed as follows.

Definition 3 [58, p. 2]: A function g : Cm
→ C is called

holomorphic if for each point w = (w1, w2, . . . , wm) ∈ Cm ,
there exists an open set U , such that w ∈ U , and the function
g has a power series expansion

f (z) =

∑
(v1,v2,...,vm )∈Nm

av1,v2,...,vm

m∏
j=1

(z j − w j )
v j (29)

which converges for all z = (z1, z2, . . . , zm) ∈ U .
Let us define a class of loss functions called well-posed

regression loss functions.
Definition 4: A loss function l : R → R is called a

well-posed regression loss function, if l satisfies the following
conditions: 1) l is analytic on R; 2) l(0) = 0; and 3) l is strictly
decreasing on (−∞, 0) and strictly increasing on (0,+∞).

The conditions in Definition 4 are satisfied by many com-
monly used loss functions for regression or their smooth
variants, such as the squared loss l(x) = x2, the parameterized
cosh l(x) = c−1

[ln(eax
+e−bx )− ln 2] with positive parameters

a, b, and c, which can approximate the absolute loss l(x) = |x |

and the quantile loss l(x) = (1 − θ)xIx⩾0 − θxIx<0 with
θ ∈ (0, 1) [59] in the limit. The following theorem studies
local minima of the empirical loss L̂ .

Theorem 7: Suppose that all samples are linearly inde-
pendent, the activation function σ× is holomorphic and not
polynomial, and that l is a well-posed regression loss function.
If the loss L̂(Z,α) is positive, then for any δ > 0, there exist
1Z and 1α satisfying the following inequalities:

L̂(Z +1Z,α +1α) < L̂(Z,α)
and

∥1Z∥F + ∥1α∥2 ⩽ δ.

Theorem 7 shows that it is always possible to reduce the
loss in the neighborhood as long as the loss is not 0. This
indicates that any local minimum of L̂(Z,α) is the global
minimum. The requirement of linearly independent samples
holds with probability 1 when the sample size is no larger
than the input dimension, and the samples are generated from
a continuous distribution. Existing studies mostly investigate
the local-minima-free condition of FNN using specific loss
with strong conditions, such as linearly separable data [60],
particular activation functions [37], [38], [61], [62], and
over-parameterization together with special initialization [42],
[45], [46], [47], [48]. Theorem 7 holds for a large class of
activations and loss functions. The requirement of a large input
dimension is reasonable since previous work proves that FNN
has suboptimal local minima with low-dimensional input under
general settings [63]. We begin our proof with two lemmas.

Lemma 3: Let g : Cm
→ C be holomorphic and not con-

stant. For any z(0) ∈ Cm , δ ∈ (0, 1), there exist 1z(1),1z(2) ∈

Cm satisfying the following inequalities:∥∥1z(1)
∥∥2

2 ⩽ δ and Re
[
g(z(0) +1z(1))

]
> Re

[
g(z(0))

]∥∥1z(2)
∥∥2

2 ⩽ δ and Re
[
g(z(0) +1z(2))

]
< Re

[
g(z(0))

]
.
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Lemma 3 shows that the neighborhood of holomorphic
functions possesses rich diversity, i.e., one can always find a
point with a smaller real part and another point with a larger
real part in the neighborhood.

Proof of Lemma 3: Let z(0) = (z(0)1 , z(0)2 , . . . , z(0)m ). Since
the function g is holomorphic, by rearranging (29), there exist
an open set U and a series of holomorphic functions f (k)j :

Cm−k
→ C with j ∈ N and k ∈ [m], such that z(0) ∈ U , and

for any z = (z1, z2, . . . , zm) ∈ U , the following holds:

f (0)0 (z) := g(z) =

∞∑
j=0

f (1)j (z2, z3, . . . , zm)
(

z1 − z(0)1

) j

f (1)0 (z2, z3, . . . , zm) =

∞∑
j=0

f (2)j (z3, z4, . . . , zm)
(

z2 − z(0)2

) j

f (2)0 (z3, z4, . . . , zm) =

∞∑
j=0

f (3)j (z4, z5, . . . , zm)
(

z3 − z(0)3

) j

. . . . . .

f (m−1)
0 (zm) =

∞∑
j=0

f (m)j

(
zm − z(0)m

) j
.

It is observed that f (m)0 = g(z(0)) when z = z(0). Then the
following k0 is well-defined:

k0 = min
{

k ∈ [m]
∣∣ f (k)0 ≡ g

(
z(0)
)}
.

Let z(1) = (z(0)1 , . . . , z(0)k0−1, zk0 , . . . , zm). Thus, one has

g
(
z(1)
)

= g
(
z(0)
)
+

∞∑
j=1

f (k0)
j (zk0+1, . . . , zm)

(
zk0 − z(0)k0

) j
.

Since f (k0−1)
0 ̸≡ g(z(0)) and g(z(1)) = f (k0−1)

0 , one has
g(z(1)) ̸≡ g(z(0)). Thus, there exists a positive integer j ∈ N+,
such that f (k0)

j (zk0+1, zk0+2, . . . , zm) ̸≡ 0. Then the following
j0 is well-defined:

j0 = min
{

j ∈ N+
∣∣ f (k0)

j (zk0+1, zk0+2, . . . , zm) ̸≡ 0
}
.

Therefore, there exist z(1)k0+1, z(1)k0+2, . . . , z(1)m , such that

f (k0)
j0

(
z(1)k0+1, z(1)k0+2, . . . , z(1)m

)
̸= 0

and
m∑

k=k0+1

(
z(1)k − z(0)k

)2
⩽
δ

2
. (30)

Let z(2) = (z(0)1 , z(0)2 , . . . , z(0)k0−1, zk0 , z(1)k0+1, z(1)k0+2, . . . , z(1)m ).
Then the function value of g at z(2) satisfies

g
(
z(2)
)

= g
(
z(0)
)
+

∞∑
j= j0

a j

(
zk0 − z(0)k0

) j
(31)

where a j = f (k0)
j (z(1)k0+1, z(1)k0+2, . . . , z(1)m ) and a j0 ̸= 0. Since

z(0) is in the open set U , there exists r > 0, such that
the ball B(z(0), r) is a subset of U . Then the radius of
convergence of the series in (31) is at least r . Thus, one
has lim sup j→∞ |a j |

1/j ⩽ 1/r from the Cauchy-Hadamard
theorem. Since any series with finite limit superior is bounded,
there exists M ⩾ max{1,

√
2δ/3}, such that |a j |

1/j ⩽ M , i.e.,
|a j | ⩽ M j . Define the change of z(0) as

1z(1) =

(
0, . . . , 0, z̃k0 , z(1)k0+1 − z(0)k0+1, . . . , z(1)m − z(0)m

)
where

z̃k0 =
min

{
1, |a j0 |

}
3M j0+1

√
2/δ

e−iθa j0
/j0 .

In view of M ⩾ 1 and (30), one has∥∥1z(1)
∥∥2

2 ⩽
∣∣z̃k0

∣∣2 +

m∑
k=k0+1

(
z(1)k − z(0)k

)2
⩽ δ

meanwhile
Re
[
g
(
z(0) +1z(1)

)]
− Re

[
g
(
z(0)
)]

=

∞∑
j= j0

Re
[
a j
(
z̃k0

) j
]

⩾ |a j0 |
∣∣z̃k0

∣∣ j0
−

∞∑
j= j0+1

M j
∣∣z̃k0

∣∣ j

⩾ min
{
1, |a j0 |

} j0+1 (δ/2) j0/2

3 j0 M j0( j0+1)

[
1 −

2
3
√

2/δ

]
> 0

where the first equality holds from (31), the first inequality
holds because of Re[z] ⩾ −|z| and |a j | ⩽ M j , the second
inequality holds based on M ⩾

√
2δ/3, and the third inequality

holds in view of δ < 1. Let
1z(2) =

(
0, . . . , 0, ẑk0 , z(1)k0+1 − z(0)k0+1, . . . , z(1)m − z(0)m

)
where

ẑk0 =
min

{
1, |a j0 |

}
3M j0+1

√
2/δ

e−i
(
π+θa j0

)
/j0
.

Then the conclusion about 1z(2) can be proven similarly.
□

Lemma 4: Let σ : C → C be holomorphic and not
polynomial, {x( j)

}
n
j=1 ⊂ Rm are n different vectors, {y j }

n
j=1 ⊂

R are not all zero, and z = (z1, z2, . . . , zm+1) is a complex-
valued vector. Then the function g : Cm+1

→ C, defined by

g(z) =

n∑
j=1

y jσ
(

x ( j)
1 z1 + x ( j)

2 z2 + · · · + x ( j)
m zm + zm+1

)
is not a constant function.

Lemma 4 provides a sufficient condition that the sum-
mation of the activation of weighted average is not a
constant.

Proof of Lemma 4: The proof consists of several steps.
Step 1: We find the necessary condition that g is a con-

stant. Since σ is holomorphic, and any holomorphic function
coincides with its Taylor series in any open set within the
domain of the function [64, Th. 4.4], there exists {ck}

∞

k=0 ⊂ C,
such that σ(z) =

∑
∞

k=0 ck zk holds for any z ∈ C. Since
σ is not polynomial, there exists {nk}

∞

k=1 ⊂ N+, such that
σ(z) = c0 +

∑
∞

k=1 cnk znk , where nk < nk+1 and cnk ̸= 0 hold
for any k ∈ N+. Thus, the function g can be rewritten as

g(z) =

n∑
j=1

y j

[
c0 +

∞∑
k=1

cnk

(
zm+1 +

m∑
l=1

x ( j)
l zl

)nk
]

= h0(z)+

∞∑
k=1

hnk (z).

If g is a constant, then one has
n∑

j=1

y j

(
zm+1 +

m∑
l=1

x ( j)
l zl

)nk

≡ 0 ∀ k ∈ N+.

According to the multinomial theorem, one has
n∑

j=1

∑
p∈Pnk

y j c pz pm+1
m+1

m∏
l=1

(
x ( j)

l zl

)pl

≡ 0 ∀ k ∈ N+
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where p = (p1, p2, . . . , pm+1), Pnk = { p | ∀ l ∈ [m +1], pl ∈

N, ∥ p∥1 = nk}, and c p is the multinomial coefficient. Since
z1, z2, . . . , zm+1 are free variables, one has

n∑
j=1

y j

m∏
l=1

(
x ( j)

l

)pl

= 0 ∀ k ∈ N+, p ∈ Pnk .

Since nk → +∞ as k → +∞, we obtain the following
necessary condition of constant g:

n∑
j=1

y j

m∏
l=1

(
x ( j)

l

)pl

= 0 ∀ p1, p2, . . . , pm ∈ N. (32)

Step 2: We restrict the summation domain of the necessary
condition in (32) to obtain another necessary condition. Let
J0 = { j ∈ [n] | y j ̸= 0}. For any l ∈ [m], we define

ml = max
j∈Jl−1

∣∣∣x ( j)
l

∣∣∣ and Jl =

{
j ∈ Jl−1

∣∣∣∣ ∣∣∣x ( j)
l

∣∣∣ = ml

}
.

Under the assumption that g is constant, we claim that∑
j∈Jm

y j

m∏
l=1

(
x ( j)

l

)pl

= 0 ∀ p1, p2, . . . , pm ∈ N. (33)

Otherwise, there exist q1, q2, . . . , qm ∈ N, such that∑
j∈Jm

y j

m∏
l=1

(
x ( j)

l

)ql

= c0 ̸= 0.

Let r1, r2, . . . , rm be even natural numbers. Thus, one has

0 =

∣∣∣∣∣∣
∑
j∈J0

y j

m∏
l=1

(
x ( j)

l

)ql+rl

∣∣∣∣∣∣
⩾

∣∣∣∣∣∣
∑
j∈Jm

y j

m∏
l=1

(
x ( j)

l

)ql+rl

∣∣∣∣∣∣
−

m∑
l=1

∣∣∣∣∣∣
∑

j∈Jl−1\Jl

y j

m∏
l=1

(
x ( j)

l

)ql+rl

∣∣∣∣∣∣
where the equality holds from (32) and definition of J0, and
the inequality holds based on the triangle inequality. Let

yM = max
j∈[n]

|y j | and L =
{
l ∈ [m]

∣∣ |Jl−1\Jl | ⩾ 1
}
.

For l ∈ [m], define

Ml = max
j∈[n]

∣∣∣x ( j)
l

∣∣∣
ml,2 =

{
max j∈Jl−1\Jl

∣∣∣x ( j)
l

∣∣∣, if Jl−1 ̸= Jl

0, if Jl−1 = Jl

Al =

(
l−1∏
s=1

mqs+rs
s

)(
m∏

t=l+1

Mqt +rt
t

)
.

Thus, one has

0 ⩾ |c0|

m∏
l=1

mrl
l −

m∑
l=1

|Jl−1\Jl |yMAlm
rl
l,2

⩾ |c0|

m∏
l=1

mrl
l −

∑
l∈L

|Jl−1\Jl |yMAlm
rl
l,2

⩾ |c0|

m∏
l=1

mrl
l −nyM

∑
l∈L

Alm
rl
l,2

where the second inequality holds because of Jl−1\Jl ⊂

Jl−1 ⊂ [n]. For l ∈ L , it is observed that ml > ml,2 ⩾ 0.
Thus, the second term in the above inequality will be much

smaller than the first term when rl is sufficiently large. More
formally, we define rl as follows.

Case 1: If l ∈ [n]\L , define rl = 0.
Case 2: If l ∈ L and ml ′,2 = 0, define rl = 2.
Case 3: Otherwise, define ⌈x⌉E as the smallest even integer

no less than x . Let

rl ′ =

 1

ln
(

ml′ ,2
ml′

) ln

(
|c0|

∏m
t=l ′+1 Mqt +rt

t

2 n2 yM
∏l ′−1

s=1 mqs
s
∏m

t=l ′+1 mrt
t

)
E

.

Based on the choice of rl , one has

0 ⩾ |c0|

m∏
l=1

mrl
l −nyM

∑
l∈L

|c0|
∏m

l ′=1 mrl′

l ′

2 n2 yM
⩾

|c0|

2

m∏
l=1

mrl
l

where the second inequality holds because of |L| ⩽ n. When
ml = 0, one has Jl−1 = Jl from the definition of Jl . Thus,
one has l ∈ L , which leads to rl = 0. Since c0 ̸= 0, one has

0 ⩾
|c0|

2

m∏
l=1

mrl
l > 0

which is a contradiction. Thus, we have proven the claim
in (33). It is observed that |x ( j)

l | = ml holds for any j ∈ Jm .
Thus, the claim indicates that when g is a constant, one has∑

j∈Jm

y j

m∏
l=1

sign
(

x ( j)
l

)pl

= 0 ∀ p1, p2, . . . , pm ∈ N (34)

where sign(·) denotes the sign function.
Step 3: We prove that the necessary condition of constant

g in (34) does not hold by probabilistic methods. For any
j ∈ Jm , let N j = {l ∈ [m] | x( j)

l = −ml} denote the set of
dimensions in which x( j) is negative. Observe that {N j } j∈Jm

are different since {x( j)
}

n
j=1 are different. Thus, there exists a

minimal element among {N j } j∈Jm , i.e., there exists j0 ∈ Jm ,
such that for any j ∈ Sm\{ j0}, one has T j ̸⊂ T j0 . For any
l ∈ [m], we define a random variable σl as follows:{

Pr[σl = 0] = 1, if l ∈ T j0

Pr[σl = 0] = Pr[σl = 1] = 1/2, if l ̸∈ T j0 .

Let σ = (σ1, σ2, . . . , σm). Thus, one has

0 = Eσ

∑
j∈Jm

y j

m∏
l=1

sign
(

x ( j)
l

)σl


= Eσ

[
y j0

m∏
l=1

sign
(

x ( j)
l

)σl

]

+ Eσ

 ∑
j∈Jm\{ j0}

y j

m∏
l=1

sign
(

x ( j)
l

)σl

 (35)

where the first equality holds from (34). For the first term
of (35), the following equation holds:

Eσ

[
y j0

m∏
l=1

sign
(

x ( j)
l

)σl

]

= y j0Eσ

∏
l∈T j0

sign
(

x ( j0)
l

)σl ∏
l ̸∈T j0

sign
(

x ( j0)
l

)σl


= y j0 (36)

where the second equality holds because of σl = 0 for all
l ∈ T j0 and x ( j0)

l > 0 for all l ̸∈ T j0 . Since T j ̸⊂ T j0 holds for
any j ∈ Jm\{ j0}, there exists l j such that l j ̸∈ T j0 and l j ∈ T j .
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Thus, for the second term of (35), one has

Eσ

 ∑
j∈Jm\{ j0}

y j

m∏
l=1

sign
(

x ( j)
l

)σl


=

∑
j∈Jm\{ j0}

y jEσ Eσl j

[
m∏

l=1

sign
(

x ( j)
l

)σl

]

=

∑
j∈Jm\{ j0}

y jEσ

 m∏
l=1,l ̸=l j

sign
(

x ( j)
l

)σl

· 0


= 0 (37)

where the second equality holds since x ( j)
l < 0 and Pr[σl j =

0] = Pr[σl j = 1] = 1/2. Substituting (36) and (37) into (35),
one has y j0 = 0, which contradicts the fact that j0 ∈ Jm ⊂

J0 and y j ̸= 0 for all j ∈ J0. Thus, the necessary condition of
constant g in (34) does not hold, which leads to the conclusion
that g is not a constant. □

Proof of Theorem 7: Let 1L̂(1Z,1α) = L̂(Z+1Z,α+

1α) − L̂(Z,α) denote the change of empirical loss. Recall-
ing (3) and (28), one has

1L̂(1Z,1α) =

n∑
j=1

−l
(
α⊤Re

[
σ
(
Zκ j

)]
− y j

)
+ l
(
(α +1α)⊤Re

[
σ
(
(Z +1Z)κ j

)]
− y j

)
where κ j and σ denote κ(x j , H×) and σ×, respectively. Let
Z = [z⊤

1 ; z⊤

2 ; . . . ; z⊤

H×
] and α = (α1;α2; . . . ;αH×

). We prove
the theorem by discussion.

Case 1: There exists k0 ∈ [H×], such that αk0 ̸= 0. Since the
loss L̂(Z,α) is positive and l(0) = 0, there exists j0 ∈ [n],
such that α⊤Re[σ(Zκ j0)] ̸= y j0 . Without loss of generality,
we only consider the case of α⊤Re[σ(Zκ j0)] > y j0 in this
proof. The other case can be proven similarly. In view of the
condition of all samples being linearly independent and the
definition of κ in (2), one knows that {κ j }

n
j=1 are linearly

independent. Thus, there exists a non-zero vector v ∈ CH× ,
such that v⊤κ j0 ̸= 0 and v⊤κ j = 0 hold for any j ∈ [n]\{ j0}.
Let 1α = 0, zk = 0 for any k ∈ [H×]\{k0}, and zk0 = cv
where c ∈ C is a complex-valued variable. Then the change
in loss becomes a function of c as follows:

1L̂(c) = l
(
α⊤Re

[
σ
(
Zκ j0

)]
+αk0 Re

[
σ
((

zk0 + cv
)⊤

κ j0

)]
−αk0 Re

[
σ
(
z⊤

k0
κ j0

)]
− y j0

)
− l
(
α⊤Re

[
σ
(
Zκ j0

)]
− y j0

)
where the equality holds since the output of FTNet on x( j)

remains the same for any j ̸= j0. Since αk0 ̸= 0, v⊤κ j0 ̸=

0, and σ is holomorphic and not constant, one knows that
αk0σ((zk0 + cv)⊤κ j0) is holomorphic and not constant w.r.t. c.
Then Lemma 3 implies that there exists c ⩽ δ/∥v∥2, such that

Re
[
αk0σ

((
zk0 + cv

)⊤
κ j0

)]
< Re

[
αk0σ

(
z⊤

k0
κ j
)]

and
Re
[
αk0σ

((
zk0 + cv

)⊤
κ j0

)]
⩾ Re

[
αk0σ

(
z⊤

k0
κ j
)]

− α⊤Re
[
σ
(
Zκ j0

)]
+ y j0 (38)

where (38) can be satisfied based on the continuity of holo-
morphic functions. Thus, one has ∥1Z∥F +∥1α∥2 = ∥cv∥2 =

|c|∥v∥2 ⩽ δ and 1L̂(c) < 0 since the loss function l is strictly
increasing on (0,+∞).

Case 2: For any k ∈ [H×], αk = 0. Let 1zk = 0 and
1αk = 0 for any k ∈ [H×]\{1}. Then the change in loss
becomes a function of 1z1 and 1α1 as follows:

1L̂ =

n∑
j=1

l
(
1α1Re

[
σ
(
(z1 +1z1)

⊤κ j
)]

− y j
)
− l
(
−y j

)
.

The proof of this case is divided into several steps.
Step 2.1: We rewrite the change of loss in a power series

form. Since the loss function l is analytic, there exist coef-
ficients {cp}

∞

p=0, such that l(y) =
∑

∞

p=0 cp y p holds for any
y ∈ R. Then the change of loss can be rewritten as

1L̂ =

n∑
j=1

∞∑
p=1

p∑
q=1

cp

(
p
q

)(
−y j

)p−q

×
(
1α1Re

[
σ
(
(z1 +1z1)

⊤κ j
)])q

=

∞∑
q=1

n∑
j=1

∞∑
p=q

cp

(
p
q

)(
−y j

)p−q
(1α1)

q

×
(
Re
[
σ
(
(z1 +1z1)

⊤κ j
)])q

=

∞∑
q=1

Cq(1α1)
q (39)

where the first equality holds from the binomial expansion, the
second equality holds by changing the order of summation,
and Cq is a function of 1z1 defined by

Cq =

n∑
j=1

∞∑
p=q

cp

(
p
q

)
Rq(

−y j
)p−q (40)

with R = Re[σ((z1 +1z1)
⊤κ j )].

Step 2.2: We prove that C1 defined in (40) is not always
zero. For q = 1, it is observed that

C1 =

n∑
j=1

∞∑
p=1

cp pRe
[
σ
(
(z1 +1z1)

⊤κ j
)](

−y j
)p−1

= Re

 n∑
j=1

l ′(−y j )σ
(
(z1 +1z1)

⊤κ j
).

Since the loss function l is a well-posed regression loss
function, one knows that the equation l ′(y) = 0 has a unique
solution y = 0. Since α = 0, all outputs of F-FTNet are
0. In view of positive loss, one knows that {y j }

n
j=1 are not

all 0, which indicates that {l ′(−y j )}
n
j=1 are not all 0. Since

{κ j }
n
j=1 are linearly independent, they are different. Note that

σ is holomorphic and not polynomial, Lemma 4 indicates that∑n
j=1 l ′(−y j )σ ((z1 +1z1)

⊤κ j ) is not a constant. Thus, there
exists 1z1, such that ∥1z1∥2 ⩽ δ/2 and C1 ̸= 0.

Step 2.3: We give upper bounds for {Cq}
∞

q=2. Provided
1z1 in Step 2.2., we define a = max j∈[n] |Re[σ((z1 +

1z1)
⊤κ j )]|. Let b = max j∈[n] |y j | for labels {y j }

∞

j=1. Since
the loss function l is analytic on R, the convergence
radius of its Taylor series should be infinity. Thus, one has
lim supp→∞ |cp|

1/p
= 0 from the Cauchy-Hadamard theorem.

Furthermore, there exists d > 0, such that |cp| ⩽ d/(4b)p

holds for any p ⩾ 2. Using these notations, coefficients
{Cq}

∞

q=2 can be bounded by

|Cq | ⩽
n∑

j=1

∞∑
p=q

|cp|

(
p
q

)∣∣Re
[
σ
(
(z1 +1z1)

⊤κ j
)]∣∣q ∣∣y j

∣∣p−q

⩽
∞∑

p=q

nd
4p

(
p
q

)(a
b

)q
(41)

where the first inequality holds from the triangle inequality.
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Step 2.4: We choose a proper 1α1 and give an upper bound
for 1L̂ . Let 1α1 = −sign(C1)b/(ka), where k ⩾ 1 is a
coefficient determined later. Thus, the change of loss in (39)
can be rewritten as

1L̂ ⩽ C11α1 +

∞∑
q=2

|Cq ||1α1|
q

⩽ −
|C1|b

ka
+

∞∑
p=2

p∑
q=2

nd
4p

(
p
q

)
1
kq

⩽ −
|C1|b

ka
+

nd
2k2

where the first inequality holds according to the triangle
inequality, the second inequality holds based on (41), the
choice of 1α1, and changing the order of summation, and
the third inequality holds because of k ⩾ 1. We employ

k = max
{

1,
nda
|C1|b

,
2b
aδ

}
and thus, one has 1L̂ < 0 and

∥1Z∥F + ∥1α∥2 = ∥1z1∥2 + |1α1| ⩽ δ/2 + δ/2 = δ.

Combining the results in all cases completes the proof. □

VII. CONCLUSION AND PROSPECT

This work investigates the theoretical properties of FTNet
via approximation and local minima. The main conclusions
are three folds. First, we prove the universal approximation
of F-FTNet and R-FTNet, which guarantees the possibility
of expressing any continuous function and any DODS on any
compact set arbitrarily well, respectively. Second, we claim the
approximation-complexity advantages and worst case guaran-
tees of one-hidden-layer F-FTNet/R-FTNet over FNN/RNN,
i.e., F-FTNet and R-FTNet can express some functions with an
exponentially fewer number of hidden neurons and can express
a function with the same order of hidden neurons in the worst
case, compared with FNN and RNN, respectively. Thirdly,
we provide the feasibility of optimizing F-FTNet to the global
minimum using local search algorithms, i.e., the loss surface of
one-hidden-layer F-FTNet has no suboptimal local minimum
using general activations and loss functions. Our theoretical
results take one step toward the theoretical understanding of
FTNet, which exhibits the possibility of ameliorating FTNet.
In the future, it is important to investigate other properties or
advantages of FTNet beyond classical neural networks, such
as from the perspectives of optimization and generalization.

APPENDIX A
COMPLETE PROOF OF (9)

Proof: We only demonstrate the proof when σ1 and σ2 are
continuous for simplicity. The case of almost everywhere
continuous activation functions can be proven with a slight
modification. The proof is divided into several steps.

Step 1: We prove that FNN with activation functions σ1 and
σ2 can approximate the state transition function ϕ of DODS,
defined in (5). Since the hidden state transition function ϕ is
continuous, and the image of a continuous function defined
on the compact set K is a compact set, there exists a convex
compact set K1 ∈ RHD , such that ht ∈ K1 holds for any
t ∈ {0, 1, . . . , T }. Let B∞(A, r) = ∪a∈A{b | ∥b−a∥∞ ⩽ r}

denote the neighborhood of the set A with radius r , and
K2 = K × B∞(K1, 1) is the Cartesian product of K and
B∞(K1, 1). It is easy to check that K2 is convex and compact.

Let x ∈ RI and h ∈ RHD . Since both σ1 and σ2 are
continuous almost everywhere and not polynomial almost
everywhere, Lemma 5 indicates that for any ε1 > 0, there exist
H1, H2 ∈ N+,A1 ∈ RH1×I ,B1 ∈ RH1×HD ,C1 ∈ RHD×H1 , θ1 ∈

RH1 ,A2 ∈ RH2×I ,B2 ∈ RH2×HD ,C2 ∈ RHD×H2 , and θ2 ∈ RH2 ,
where C1 and C2 are row independent, such that

sup
(x,h)∈K2

∥ϕ(x, h)− C1σ1(A1x + B1h − θ1)∥∞ ⩽ ε1

sup
(x,h)∈K2

∥ϕ(x, h)− C2σ2(A2x + B2h − θ1)∥∞ ⩽ ε1. (42)

Step 2: We prove that RNN using the same weight matrices
as FNN in (42) can approximate ht , the hidden state of DODS.
Let p(1)0 = q(1)0 = h0. For any t ∈ [T ], define

p(1)t = C1σ1

(
A1xt + B1 p(1)t−1 − θ1

)
∈ RHD

q(1)t = C2σ2

(
A2xt + B2q(1)t−1 − θ2

)
∈ RHD . (43)

The above p(1)t and q(1)t are outputs of two different RNNs.
We then prove that p(1)t and q(1)t can approximate ht . Let
u : [0,+∞) → R be defined as

u(a) = sup{∥ϕ( y)− ϕ(z)∥∞ | y, z ∈ K2, ∥ y − z∥∞ ⩽ a}.

From Lemma 6, u(a) is continuous. For any t , if ∥ht−1 −

p(1)t−1∥∞ ⩽ 1 , then (xt , p(1)t−1) ∈ K2, and one has∥∥∥ht − p(1)t

∥∥∥
∞

=

∥∥∥ϕ(xt , ht−1)− C1σ1

(
A1xt + B1 p(1)t−1 − θ1

)∥∥∥
∞

⩽
∥∥∥ϕ(xt , ht−1)− ϕ

(
x1, p(1)t−1

)∥∥∥
∞

+

∥∥∥ϕ(x1, p(1)t−1

)
− C1σ1

(
A1xt + B1 p(1)t−1 − θ1

)∥∥∥
∞

⩽ u
(∥∥∥ht−1 − p(1)t−1

∥∥∥
∞

)
+ ε1

where the first equality holds from the definitions of DODS
and p(1)t , the first inequality holds because of the triangle
inequality, and the second inequality holds based on the
definition of u(a), (xt , p(1)t−1) ∈ K2, and (42). Let a0 = 0.
For any t ∈ [T ], we define at = u(at−1)+ ε1. Then Lemma 7
indicates limε1→0+

at = 0 for any t ∈ [T ], i.e., for any ε2 ∈

(0, 1), there exists δ1(ε2) > 0, such that for any ε1 ⩽ δ1(ε2),
at ⩽ ε2 holds for any t ∈ [T ]. When ε1 ⩽ δ1(ε2), it is easy
to see that ∥ht − p(1)t ∥∞ ⩽ at ⩽ ε2 holds for any t ∈ [T ].
The same conclusion can be proven for q(1)t in the same way.
Thus, for any ε1 ⩽ δ1(ε2), one has

max
t∈[T ]

∥ht − p(1)t ∥∞ ⩽ ε2 and max
t∈[T ]

∥ht − q(1)t ∥∞ ⩽ ε2.

(44)
Step 3: Transformation is used to eliminate the matrices

C1 and C2 in (43), which is the preparation to approximate
ht using additive FTNet. Since C1,C2 are row independent,
both C1x = p(1)0 and C2x = q(1)0 have solutions. Let p(2)0 and
q(2)0 be the solutions of the above equations, respectively, i.e.,
C1 p(2)0 = p(1)0 and C2q(2)0 = q(1)0 . Define

p(2)t = σ1

(
A1xt + B1C1 p(2)t−1 − θ1

)
∈ RH1

q(2)t = σ2

(
A2xt + B2C2q(2)t−1 − θ2

)
∈ RH2 . (45)

We claim that, for any t ∈ {0, 1, . . . , T }

p(1)t = C1 p(2)t , q(1)t = C2q(2)t . (46)

Since the proof of q(2)t is similar to that of p(2)t , we only give
the proof of p(2)t using mathematical induction as follows.
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1) For t = 0, the claim holds from the definition of p(2)0 .
2) Suppose that the claim holds for t = k, where k ∈

{0, 1, . . . , T − 1}. Thus, one has

p(1)k+1 = C1σ1

(
A1xk+1 + B1 p(1)k − θ1

)
= C1σ1

(
A1xk+1 + B1C1 p(2)k − θ1

)
= C1 p(2)k+1

where the first equality holds from the definition of p(1)t
with t = k+1 in (43), the second equality holds because
of the induction hypothesis, and the third equality holds
based on the definition of p(2)t with t = k +1. Thus, the
claim holds for t = k + 1.

Step 4: We prove that additive FTNet can approximate ht
by unifying the weight matrices in (45). Let H3 = H1 + H2.
For any t ∈ [T ], define

p(3)t = σ1

(
A3xt + B3q(3)t−1 − θ3

)
∈ RH3

q(3)t = σ2

(
A3xt + B3q(3)t−1 − θ3

)
∈ RH3 (47)

where

q(3)0 =

[
0

q(2)0

]
, A3 =

[
A1
A2

]
B3 =

[
0 B1C2
0 B2C2

]
, θ3 =

[
θ1

θ2

]
.

For q(3)t , we claim that q(3)t = [×t ; q(2)t ] holds for any
t ∈ [T ], where ×t ∈ RH1×1 is a vector that we do not care,
because it has no contribution to the iteration or output in
the above additive FTNet. We prove the claim about q(3)t by
mathematical induction as follows.

1) For t = 1, one has

q(3)1 = σ2

(
A3x1 + B3q(3)0 − θ3

)
= σ2

([
A1x1 + B1C2q(2)0 − θ1

A2x1 + B2C2q(2)0 − θ2

])
=

[
×1; q(2)1

]
where the first equality holds according to the definition
of q(3)t with t = 1 in (47), the second equality holds
based on the definitions of A3,B3, θ3, and the third
equality holds from the definition of q(2)t with t = 1 in
(45). Thus, the claim holds for t = 1.

2) Suppose that the claim holds for t = k where k ∈ [T −

1]. Thus, one has

q(3)k+1 = σ2

(
A3xk+1 + B3q(3)k − θ3

)
= σ2

([
A1xk+1 + B1C2q(2)k − θ1

A2xk+1 + B2C2q(2)k − θ2

])
=

[
×k+1; q(2)k+1

]
where the first equality holds from the definition of q(3)t
with t = k +1, the second equality holds because of the
definitions of A3,B3, θ3, and the third equality holds
based on the definition of q(2)t with t = k + 1. Thus, the
claim holds for t = k + 1.

We then study the property of p(3)t . Let
C3 =

[
C1 0HD×H2

]
.

If ∥ht−1 − q(1)t−1∥∞ ⩽ 1 , then (xt , q(1)t−1) ∈ K2, and one has

∥ht − C3 p(3)t ∥∞

= ∥ϕ(xt , ht−1)− C1σ1

(
A1xt + B1C2q(2)t−1 − θ1

)
∥∞

⩽ ∥ϕ(xt , ht−1)− ϕ
(

xt , q(1)t−1

)
∥∞

+ ∥ϕ
(

xt , q(1)t−1

)
− C1σ1

(
A1xt + B1q(1)t−1 − θ1

)
∥∞

⩽ u(ε2)+ ε1

where the first equality holds because of the definitions of
DODS, C3, and p(3)t , the first inequality holds based on the
triangle inequality and (46), and the second inequality holds
based on the definition of u(a), (xt , q(1)t−1) ∈ K2, (42) and (44).
Then according to the continuity of u(a) and u(0) = 0, for any
ε3 > 0, there exist δ2(ε3) and δ3(ε3), such that if ε1 ⩽ δ2(ε3)
and ε2 ⩽ δ3(ε3), one has

max
t∈[T ]

∥ht − C3 p(3)t ∥∞ ⩽ ε3. (48)

Step 5: The output function ψ in (5) can be approximated by
an FNN. Let τ3 be any continuous non-polynomial function.
According to Lemma 1, for any ε4 > 0, there exist H4 ∈

N+,A4 ∈ RH4×HD ,B4 ∈ RO×H4 , θ4 ∈ RH4×1, such that
sup

h∈B(K1,1)
∥ψ(h)− B4τ3(A4h − θ4)∥∞ ⩽ ε4. (49)

For any t ∈ [T ], define y(1)t = B4τ3(A4C3 p(3)t − θ4). Substi-
tuting the definition of p(3)t in (47) into the above definition,
one has, for any t ∈ [T ]

y(1)t = B4τ3

(
A4C1σ1

(
A1xt + B1C2q(2)t−1 − θ3

)
− θ4

)
. (50)

Since σ2 is continuous, and xt ∈ K holds for any t ∈ [T ],
there exists a compact set K3, such that q(2)t ∈ K3 holds for any
t ∈ [T ]. Since σ1 is continuous and not polynomial, Lemma 1
implies that for any ε5 > 0, there exist H5 ∈ N+,A5 ∈

RH5×I ,B5 ∈ RH5×H2 ,C5 ∈ RO×H5 , and θ5 ∈ RH5 , such that
sup

(x,q)∈K×K3

∥∥B4τ3(A4C1σ1(A1x + B1C2q − θ3)− θ4)

− C5σ1(A5x + B5q − θ5)
∥∥

∞
⩽ ε5.

(51)
For any t ∈ [T ], define

p(5)t = σ1

(
A5xt + B5q(2)t−1 − θ5

)
∈ RH5

q(5)t = σ2

(
A5xt + B5q(2)t−1 − θ5

)
∈ RH5 . (52)

Then (50) and (51) imply that
max
t∈[T ]

∥ y(1)t − C5 p(5)t ∥∞ ⩽ ε5. (53)

Step 6: The final additive FTNet is constructed to approx-
imate the target DODS. Let H = H3 + H5, and define the
additive FTNet f+,R as follows:

A =

[
A3
A5

]
, B =

[
B3 0
B6 0

]
, ζ =

[
θ3
θ5

]
C =

[
0 C5

]
, q0 =

[
q(3)0
q(5)0

]
(54)

where B6 = [0,B5] pads the matrix B5 with 0. We claim that
pt = [ p(3)t ; p(5)t ] and q t = [q(3)t ; q(5)t ] hold for any t ∈ [T ].
The proof of q t is similar to that of pt , and we only prove
the claim of pt using mathematical induction as follows.

1) For t = 1, one has
p1 = σ1

(
Ax1 + Bq0 − ζ

)
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= σ1

([
A3x1 + B3q(3)0 − θ3

A5x1 +
[

0 B5
]
q(3)0 − θ5

])
=

[
p(3)1 ; p(5)1

]
where the first equality holds because of the definition
of pt with t = 1 in (8), the second equality holds
according to (54), and the third equality holds based on
the definition of q(3)0 in (54), the definitions of p(3)t , p(5)t
with t = 1 in (47) and (52).

2) Suppose that the claim holds for t = k where k ∈ [T −

1]. Thus, one has
pk+1 = σ1

(
Axk+1 + Bqk − ζ

)
= σ1

([
A3xk+1 + B3q(3)k − θ3

A5xk+1 +
[

0 B5
]
q(3)k − θ5

])
=

[
p(3)k+1; p(5)k+1

]
where the first equality holds from the definition of pt
with t = k +1, the second equality holds because of the
definitions of A,B, ζ , q0, and the third equality holds
based on the definitions of p(3)t , p(5)t with t = k +1, and
the conclusion q(3)t = [×t ; q(2)t ] with t = k.

For any t ∈ [T ], one has
∥yt − y+,t∥∞

⩽ ∥ψ(ht )− ψ
(

C3 p(3)t

)
∥∞

+ ∥ψ
(

C3 p(3)t

)
− y(1)t ∥∞ + ∥ y(1)t − C5 p(5)t ∥∞

⩽ u
(
∥ht − C3 p(3)t ∥∞

)
+ ε4 + ε5

⩽ u(ε3)+ ε4 + ε5

where the first inequality holds because of the triangle inequal-
ity, the definitions of DODS and ŷt , the second inequality
holds based on the definition of u(a), (49) with h = C3 p(3)t ,
and (53), and the third inequality holds in view of (48).
Since u(a) is continuous, and u(0) = 0, for any ε6 > 0,
there exists δ4(ε6) > 0, such that for any ε3 ⩽ δ4(ε6), one
has u(ε3) ⩽ ε6. Let ε5 = ε4 = ε6 = ε/3, then one has
maxt∈[T ] ∥yt − y+,t∥∞ ⩽ ε, i.e.,

sup
x1:T ∈K T

∥ fD(x1:T )− f+,R(x1:T )∥∞ ⩽ ε

which completes the proof. □

APPENDIX B
USEFUL LEMMAS

Lemma 5: Suppose that σ : R → R is continuous almost
everywhere and not polynomial almost everywhere. Then for
any ε > 0, any continuous function f : RI

→ RO , and
any compact set K ⊂ RI , there exist H ∈ N+, W ∈ RH×I ,
θ ∈ RH , and row independent U ∈ RO×H , such that

∥ f (x)− Uσ(Wx − θ)∥L∞(K ) ⩽ ε.

Proof: For any ε > 0, continuous function f : RI
→ RO ,

and compact set K ⊂ RI , Lemma 1 indicates that there exist
H1 ∈ N+, W1 ∈ RH1×I , θ1 ∈ RH1 , and U1 ∈ RO×H1 , such that

∥ f (x)− U1σ(W1x − θ1)∥L∞(K ) ⩽ ε.

Define a new FNN with hidden size H = H1 + O as follows:

W =

[
W1
0

]
, θ =

[
θ1
0

]
, U =

[
U1 IO

]

where IO is the identity matrix of size O × O . Then it is easy
to see that U is row independent and
∥ f (x)− Uσ(Wx − θ)∥L∞(K )

= ∥ f (x)− U1σ(W1x − θ1)∥L∞(K ) ⩽ ε

which completes the proof. □
Lemma 6: Let ϕ : Rn

→ R be continuous, and K2 ⊂ Rn

is a convex compact set. Then u(a) = sup{∥ϕ( y)− ϕ(z)∥∞ |

y, z ∈ K2, ∥ y − z∥∞ ⩽ a} is continuous on [0,+∞).
Proof: The proof is divided into several steps.

Step 1: We prove that u is well-defined and bounded. Since
any continuous function is bounded on any compact set, there
exists Uϕ ∈ R, such that ∥ϕ( y)∥∞ ⩽ Uϕ holds for any y ∈ K2.
Then according to the triangle inequality, ∥ϕ( y)− ϕ(z)∥∞ ⩽
2Uϕ holds for any y, z ∈ K2, i.e., |u(a)| ⩽ 2Uϕ holds for
any a ∈ [0,+∞). Thus, u(a) is well-defined and bounded on
[0,+∞).

Step 2: It is obvious that u(0) = 0.
Step 3: We prove that u is monotonically increasing. Let

0 ⩽ a1 < a2. For any ε > 0, according to the definition
of supremum, there exist y1, z1 ∈ K2, such that ∥ϕ( y1) −

ϕ(z1)∥∞ ⩾ u(a1) − ε and ∥ y1 − z1∥∞ ⩽ a1. Since a1 < a2,
one has ∥ y1 − z1∥∞ ⩽ a2. Thus, one has

u(a2) ⩾ ∥ϕ
(

y1
)
− ϕ(z1)∥∞ ⩾ u(a1)− ε.

According to the arbitrariness of ε, one has u(a2) ⩾ u(a1).
Therefore, u(a) is a monotonically increasing function.

Step 4: We prove that u is right continuous. Let b ∈

[0,+∞) be an arbitrary non-negative real number. Since u(a)
is bounded and monotonically increasing on [0,+∞), the
limit lima→b+

u(a) exists. Let u+ = lima→b+
u(a) denote this

limit. If u+ ̸= u(b), then one has u+ > u(b) since u(a) is
monotonically increasing. Since any continuous function on
a compact set is uniformly continuous, there exists δ > 0,
such that for any y, z ∈ K2, ∥ y − z∥∞ ⩽ δ indicates
∥ϕ( y)−ϕ(z)∥∞ ⩽ [u+−u(b)]/3. Since u(a) is monotonically
increasing, one has u(b+δ) ⩾ u+. According to the definition
of supremum, there exist y2, z2 ∈ K2, such that ∥ y2 − z2∥∞ ⩽
b + δ and

∥ϕ
(

y2
)
− ϕ(z2)∥∞ ⩾ u+ −

[
u+ − u(b)

]
/3.

Let ξ = λz2 + (1−λ) y2, where λ = b(b+δ)−1
∈ [0, 1]. Since

y2, z2 ∈ K2, and K2 is convex, one has ξ ∈ K2. According to
the homogeneity of norm, one has

∥ξ − y2∥∞ = λ∥z2 − y2∥∞ ⩽ λ(b + δ) = b
∥z2 − ξ∥∞ = (1 − λ)∥z2 − y2∥∞ ⩽ (1 − λ)(b + δ) = δ.

Thus, one has
u(b) ⩾ ∥ϕ(ξ)− ϕ

(
y2
)
∥∞

⩾ ∥ϕ(z2)− ϕ
(

y2
)
∥∞ − ∥ϕ(z2)− ϕ(ξ)∥∞

⩾
(
u+ −

[
u+ − u(b)

]
/3
)
−
[
u+ − u(b)

]
/3

= u(b)+
[
u+ − u(b)

]
/3

> u(b)
where the first inequality holds from ∥ξ − y2∥∞ = b, the
second inequality holds based on the triangle inequality, and
the third inequality holds because of the definitions of y2, z2,
and ∥z2 − ξ∥∞ = b. The above inequality is a contradiction,
which means that u+ ̸= u(b) does not hold. Therefore, one
has u+ = u(b), which means that u(a) is right continuous.

Step 5: Similarly, we can prove that u(a) is left continuous.
Therefore, u(a) is continuous. □
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Lemma 7: Let a0 = 0. For any t ∈ [T ], let at = u(at−1)+ε,
where T ∈ N+ is a positive integer, u : R → R is continuous,
and u(0) = 0. Then limε→0+ at = 0 holds for any t ∈ [T ].

Proof: We prove this lemma by mathematical induction.
1) For t = 1, one has

lim
ε1→0+

a1 = lim
ε1→0+

u(a0)+ ε1 = 0 + 0 = 0.

Thus, the conclusion holds for t = 1.
2) If the conclusion holds for t = k where k ∈ [T − 1],

then
lim
ε1→0+

ak+1 = lim
ε1→0+

u(ak)+ ε1

= u
(

lim
ε1→0+

ak

)
+ 0

= u(0)+ 0 = 0.
Thus, the conclusion holds for t = k + 1.

Then mathematical induction completes the proof. □
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